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Abstract: The intension of the present work is to present the stochastic numerical approach for 

solving Human Immunodeficiency Virus (HIV) infection model of cluster of differentiation 4 

of T-cells, i.e., CD4+ T cells. A reliable integrated intelligent computing framework using 

layered structure of neural network with different neurons and their optimization with efficacy 

of global search by genetic algorithms (GAs) supported with rapid local search methodology 

of active-set method, i.e., hybrid of GA-ASM, is used for solving the HIV infection model of 

CD4+ T cells. A comparison between the present results for different neurons based models 

and the numerical values of the Runge-Kutta method reveals that the present intelligent 

computing techniques is trustworthy, convergent and robust. Statistics based observation on 

different performance indices further demonstrates the applicability, effectiveness and 

convergence of the present schemes. 

Keywords: HIV infection, genetic algorithms, hybrid approach, sequential quadratic 

programming, artificial neural networks, statistical analysis. 

1. Introduction 

In recent years, numerous mathematical models have been built-up for human 

immunodeficiency virus (HIV) infectious dynamics of cluster of differentiation 4 of T-cells, 

i.e., CD4+ T cells. The present study is about the HIV infection model [1]. This model is the 

combination of three basic component models, which are CD4+ T cells septic by the HIV 

viruses, attention of susceptible cells and free HIV virus elements in the blood. The general 

form of the model is a system of three nonlinear system of differential equations, written as 

[1]: 
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where T (t), I (t) and V (t) represent the concentration of CD4+ T cells, septic from the viruses 

of HIV and virus free particles, respectively. Furthermore, r, maxT , q, k and n respectively 

denote growth rate of CD4+ T cell concentration, maximal attention of CD4+ T cells, source 

factor due to uninfected CD4+T cells, the virus infected rate of CD4+T cells and virus particles 

created by each infected CD4+T cell. While,  ,   and   are the natural death rate of 

uninfected CD4+T cells, infected CD4+T cells and virus free particles, respectively. 

Recently, many numerical techniques have been presented to solve the HIV infection spread 

model given in equation (1) [1-7]. These numerical procedures have their individual advantages 

and drawbacks, whereas, stochastic numerical solvers based on artificial neural networks 

(ANNs) are looks promising to be exploited for HIV infection spread and control models due 

to their ability of accurate modeling, precision, consistency and efficiency for solving 

optimization problems arising in various fields [8-12]. Recent applications of stochastic solvers 

are nonlinear Troesch's problem [13], inverse kinematics problems [14], cell biology [15], 

nonlinear prey-predator models [16], power [17], thin film flow [18], fuzzy differential 

equations [19], uncertainties in computational mechanics [20], nonlinear singular Thomas-

Fermi systems [21], nanofluidics problems [22], heat conduction model of human head [23], 

nonlinear optics [24], doubly-singular systems [25], control autoregressive moving average 

systems [26], transistor-level uncertainty quantification [27] and energy [28].  

The intension of the present work is to solve the model (1) numerically using the ANNs 

optimized by genetic algorithm (GA), active-set method (ASM) and the hybrid of GA-ASM. 

The reliability and exactness is checked by comparing the present results with the Runge-Kutta 

(RK) numerical scheme. Furthermore, the accuracy of the present scheme evaluated through 

statistical analysis. 

2. Design Methodology 

The design methodology of the present scheme is divided in two parts for numerical solution 

of HIV model (1). In part 1, we introduce an error based fitness function, while in part 2, the 

combination of GA with ASM, i.e., GA-SQP optimization scheme is given in means of 

introductory material, applications, pseudocode and flow charts. The graphical abstract of the 

methodology is presented in Fig. 1. 

2.1 ANN Modeling 

The model (1) is formulated with feed-forward layer structure of ANNs, i.e., single input, 

hidden and output layers, to approximate the ( ), ( )and ( )T t I t V t , as well as, their respective 

derivatives of order n as: 
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for m neurons, while the weight vector W is defined as: 

[ , , ]T I V=W W W W , for [ , , ]T T T T=W w b , [ , , ]I I I I=W w b  and [ , , ]V V V V=W w b . The 

components of weight vector W are given as: 
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The networks (2) up to second order, i.e., n = 2, using the log-sigmoid activation function 

1 (1 exp( ))t+ − are written, respectively, as: 
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(3) 

The networks presented in (3) can be used to formulate the fitness function of model (1) by 

introducing mean squared error function as follow: 

1 2 3 4= + + +  (4) 
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where N = 1/h, ˆ ˆ ˆ, , andm m mT I V  are discrete equivalents of networks for   ,mt mh=  1 , 2  and 

3  are the error functions related to respective differential equations of model (1), while 4  is 

a part of fitness function representing the initial condition of model (1). The solution of the 

model (1) can be achieved from with weights such that 0,→  then, the approximate solutions 

ˆ ˆ ˆ, ,T I V 
 

become identical, i.e.,  ˆ ˆ ˆ, , , ,T I V T I V  →
 

. 

2.2. Optimization process: GA-SQP 

The optimization of ANNs weights is achieved through the hybrid-computing framework 

based on GA-SQP in the presented study for solving HIV infection spread model.  

Genetic Algorithm is used for constrained/ unconstrained optimization problems based on 

mathematical modelling of natural genetic cycle in human beings. GA works continually to 

change the population of individuals, i.e., candidate solutions, and solve numerous 

problems/tasks of optimization, e.g. stochastic, highly nonlinear and non-differentiable. GA is 

applied in a variety of fields as a proficient global search tool that works with its reproduction 

implements via selection, crossover and mutation operators for finding the feasible solution. 

The schematic work flow of GA in terms of process block structure is presented in Fig. 1, while 

descriptive operation of each component of reproduction mechanism for the GAs is given in 

Fig. 2.  The recent use of  GAs  in broad domain include optimization of nanofluid flow systems 

[29], building envelope calibration [30], for solving multi depot vehicle routing problem [31], 

Hammerstein controlled autoregressive models [32], thermal comfort in building design [33], 

prediction of biosorption capacity [34], missing traffic volume data estimation [35], 

heterogeneous bin packing [36], heterogeneous computing systems [37], radiobiology 

applications [38], handling offset in chemical processes [39], nonlinear electric circuit models 

[40], nonlinear Van der Pol equation based heartbeat dynamics [41], reliability–redundancy 

allocation problem [42] and multi-stage transmission planning [43]. 

Active-set Method: ASM is a competent local search technique, which broadly implemented 

for both constrained/unconstrained convex optimization tasks. The process block structure of 

ASM is presented in Fig. 1. Recently, ASM is used for optimizations problems include 

optimization in water distribution system [44], nonlinear control for the turbofan engines [45], 

contact problems for multi-rigid-body dynamics. [46], large-scale nonsmooth optimization 

tasks [47] and embedded model predictive control [48].  

In the presented study, integrated strength of global search efficacy of GAs and rapid local 

search competency of ASM, i.e., GA-ASM, is exploited to optimize the decision variables of 

the networks for finding the solution of system of differential equation representing HIV 

infection model (1). The pseudocode of hybrid heuristic scheme GA-ASM to train ANN is 

provided in Table 1 for better understanding and ease in reproduction of the results. The 

necessary parameter settings for both GA and ASMs is also tabulated in Table 1 and the 

performance of GA-ASM is dependent of these settings. A slight alternation in the said 

parameters can lead to premature convergence of the optimization process, thus, a lot of 

simulations, experience and knowledge of underlying optimization concepts is required for 

realization of appropriate settings for hybrid GA-ASM. 
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Figure 1: Graphical illustration of present scheme for HIV model 



 

Table 1: Pseudo code using GA-SQP 

Start of Genetic Algorithms  

 Inputs: The chromosome with same number of entries of the network  

  [ , , ] [( , , ), ( , , ), ( , , )]T I V T T T I I I V V V= =W W W W w b w b w b    

 Population: The set of chromosomes to form a population P as:  

  1 2 3[( , , ,..., )]n=P W W W W , or 

  1 1 1 2 2 2[( , , ,..., , , )]T I V T I V Tn In Vn=P W W ,W ,W W ,W W W W   

  for [ , , ] [( , , ), ( , , ), ( , , )]Ti Ii Vi Ti Ti Ti Ii Ii Ii Vi Vi Vi=W W W w b w b w b    

 Output: Global best variables attained by GAs, WB_GA. 

 Initialization: Produce W of real numbers to represent a chromosome 

 to make an initial P. Set the procedure of Generation and declarations 

 values of “GA” and “gaoptimset” procedures 

 Calculations of Fitness: To calculate the fitness  use Eq. (4) 

 Termination: Implementation of the scheme terminates for 

 accomplishment of the following 

‘Fitness limit’→ ‘e ≤ 10-12, ‘Generations’=‘100’, ‘TolFun’≤10-18,  

‘TolCon’≤10-20, ‘StallGenLimit’=‘100’,‘PopulationSize’=‘300’ and 

other values as ‘default’ settings. 

 Go to storage step, If termination condition meets, 

 Ranking: Each W of P ranked through brilliance of the fitness rate. 

 Reproduction: Repeated the updated P with following 

• “Selection”: ‘@selectionuniform’. 

• “Crossover”: ‘@crossoverheuristic routine’. 

• “Mutations”: ‘@mutationadaptfeasible function’. 

• “Elitism”: ‘best chromosome of P’. 

 Continue from fitness step 

 Storage: Store WB_GA, fitness, generation, time, and count of functions 

 for the present run of GAs  

End Genetic algorithms 

ASM Procedure Start 

 Inputs: WB_GA 

 Output: The best vector of decision variable by GA-ASM is WGA_ASM 

 Initialize: Use WB_GA as a starting point,  Decelerations and bounded 

 based on “optimset” and “fmincon” routines,  

 Termination: When any of the value meet, stop the algorithm 

 ‘Fitness limit’ = ‘ ≤ 10-14’, ‘total Iterations’ = ‘1200’, 

 ‘TolFun’ ≤ ‘10-18’, ‘TolX’ ≤ ‘10-22’, ‘TolCon’ ≤ ‘10-22’, 

 ‘MaxFunEvals’ ≤ ‘270000’ 

 While (Terminate) 

  Fitness calculation: Using Eqs (4-8), find the fitness  

  Adjustments: Invoking ‘fmincon’ routine using algorithm  

  ‘active-set’ to adjust W. 

  Go to the fitness step with updated W 

 End 

  Save the final adaptive weights WGA_SQP and  , iterations, time 
  and function count for the current run. 

ASM Procedure End 
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Figure 2: Optimization cycle of Genetic Algorithms 

3. Performance indices 

The two performance measures for the model (1) are introduced here based on the mean 

absolute deviation (MAD) and Theil’s inequality coefficient (TIC). The mathematical 

formulation of both MAD and TIC metrics is given, respectively, as follows: 
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The terms arising in equations (9-10) are defined in the last section. 

3. Results and discussion 

In this section, the HIV infection model (1) is solved numerically by taking different number 

of neurons based layered structure neural network optimized with integrated heuristics of GA-

ASM as per process narrated in pseudocode tabulated in Table 1. The comparison of presented 

results and the RK solution is used to analyze the exactness of the proposed solver. Moreover, 

results of statistical analysis are also used to check the accuracy of the present scheme.  

HIV infection model of CD4+ T cells as given in equation (1) with reported parametric values 

r = 3, q = 0.1, α = 0.02, γ = 2.4, β = 0.3, n = 10, k = 0.0027, Tmax = 1500 and r1 = r2 = r3 = 0, are 

taken for numerical experimentation of presented methodology [49-53]. The updated form of 

the model (1) with these parameters is written as follows: 
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1500
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The error based objective function for model (11) is written as: 
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The terms arising in relation (12) are defined in section 2. The optimization of the relation (12) 

is carried out with GA-ASM for hundred trials and one set of trained weight of ANN based on 

5, 10 and 15 neuron is plotted in Fig. 3 for ˆ ˆ ˆ, , andT I V . The parameters presented in Fig. 3 

are used to find the approximate solution for ˆ ˆ ˆ, , andT I V  using equation (1) of set (3). The 

solutions determined for ANN models of equation with 5, 10 and 15 neurons in case of 



ˆ ˆandT V  along with reference solutions of RK solver are presented in Fig. 4. The overlapping 

outcomes of presented method with RK solver for all three neuron based ANN models is 

obtained. In order to estimate matching accuracy, the absolute error (AE) is calculated and 

results are also plotted in Fig. 4 for 5, 10 and 15 neuron based models for all three ˆ ˆ ˆ, , andT I V  

parameters. It is clear that the values of ˆ ˆ ˆ, , andT I V  lie in the ranges of 10-05 to 10-07, 

respectively, for 5 neuron models of HIV infection system, while for 10 and 15 neuron based 

models lie around 10-05 to 10-07 and 10-06 to 10-08, respectively. The present results are found in 

good agreement with the RK solver for HIV infection model of CD4+ cells.  

Result of statistics of proposed methodology for 100 independent trials are presented in Figures 

5, 6 and 7 for both performance indices of MAD and TIC in case of 5, 10 and 15 number of 

neurons based ANN models, respectively. In subfigures 5(a), 6(a) and 7(a) MAD based values 

of ˆ ˆ ˆ, , andT I V  for number of trials are present, while in case of TIC results are illustrated in 

subfigures 5(n), 6(n) and 7(n). Assessment of the precision of proposed stochastic solver is 

performed by histogram studies and boxplots for all three neuron based model. The results of 

histogram are provided in subfigures 5(b-d, h-j), 6(b-d, h-j) and 7(b-d, h-j), while boxplots are 

given in 5(e-g, k-m), 6(e-g, k-m) and 7(e-g, k-m). Results of histogram/boxplots studies show 

that around 80% of independent executions/trials of presented scheme achieve accuracy of 

order 10-06 and 10-08 for MAD and TIC, respectively. With increase in number of neurons, i.e., 

in case of 5, 10 and 15, the accuracy also enhanced accordingly for ANN based differential 

equation models of HIV infection system (11). A small values of median in each boxplot show 

the consistent precision of proposed stochastic solver for HIV infection model (11). 

Statistical measures based on minimum (Min), median (Med) and semi interquartile range 

(SIR) are conducted for precision analysis of the present stochastic technique. The statistics for 

Min, Med and SIR terms are tabulated in Tables 3, 4 and 5 for 5, 10 and 15 number of neurons 

based ANN models, respectively. For T(t), Min values lies around 10−06 to 10−09 for all neurons 

based models of ANN, while the Med values lie around 10−03 to 10−05 for 5 neurons, whereas 

for both 10 and15 neurons the values lie around 10−04 to 10−06. Finally, the SIR values of T(t) 

are also provided for each case of HIV model. SIR is basically one half of the difference of 3rd 

quartile (Q3=75% data) and 1st quartile (Q1= 25% data). The values of the SIR lie around 10−04 

to 10−06 that indicates very good ranges for HIV model. Moreover, I(t) and V(t) similar trend 

of the results is observed. 

 

Table 2: Statistics results for metrics for 5 neurons based ANN model of HIV model 

 

 

 

 

x 
T(t) I(t) V(t) 

Min Med SIR Min Med SIR Min Med SIR 

0 6.21E-08 2.59E-05 1.61E-02 1.68E-05 9.03E-05 1.48E-05 6.63E-09 1.46E-06 2.09E-06 

0.2 5.31E-08 1.08E-04 4.62E-02 2.18E-05 1.15E-04 1.54E-05 5.62E-06 5.95E-05 1.63E-05 

0.4 4.24E-07 2.57E-04 8.54E-02 2.42E-05 1.35E-04 1.53E-05 2.92E-05 1.04E-04 3.04E-05 

0.6 1.38E-06 3.18E-04 1.56E-01 1.75E-05 1.50E-04 1.74E-05 1.71E-05 1.29E-04 2.90E-05 

0.8 3.25E-09 6.98E-04 2.81E-01 5.77E-05 1.67E-04 1.97E-05 2.83E-05 1.60E-04 2.88E-05 

1 1.81E-06 1.17E-03 5.07E-01 1.06E-04 1.84E-04 2.06E-05 3.34E-05 1.77E-04 2.59E-05 

 



 
  

(a): ANN weights of 5 neurons for 

T(t) of HIV infection model 
(b): ANN weights of 5 neurons for 

I(t) of HIV infection model 
(c): ANN weights of 5 neurons for 

V(t) of HIV infection model 

 
 

 

(d): ANN weights of 10 neurons for 

T(t) of HIV infection model 
(e): ANN weights of 10 neurons for 

I(t) of HIV infection model 
(f): ANN weights of 10 neurons for 

V(t) of HIV infection model 

 
 

 

(g): ANN weights of 15 neurons for 

T(t) of HIV infection model 
(h): ANN weights of 15 neurons for 

I(t) of HIV infection model 
(i): ANN weights of 15 neurons for 

V(t) of HIV infection model 

Figure 3: A set of weights of ANNs trained by GA-ASM using for 5, 10 and 15 neurons 

based differential equations models of HIV infection system of CD4+ T cells 
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(a): Comparison of the solution T(t) of 
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(a): Comparison of the solution TV(t) of 
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(d): Comparison of the solution T(t) of 

HIV infection mode for 10 neurons 

 Input t 

(e): Comparison of the solution TV(t) of 

HIV infection mode for 10 neurons 

 Input t 

(f): Comparison on AE for HIV 

infection model for 10 neurons 
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 Input t 

(g): Comparison of the solution T(t) of 

HIV infection mode for 15 neurons 

 Input t 

(h): Comparison of the solution V(t) of 

HIV infection mode for 15 neurons 

 Input t 

(i): Comparison on AE for HIV 

infection model for 15 neurons 

Figure 4: Results of proposed methodology and their comparison from reference RK solver for 5, 10 

and 15 neurons based ANN models of differential equation. 

Table 3: Statistics results for metrics for 10 neurons based ANN model of HIV model 

 
 

 

x 
T(t) I(t) V(t) 

Min Med SIR Min Med SIR Min Med SIR 

0 1.93E-08 1.12E-06 1.23E-06 5.19E-05 8.98E-05 3.38E-07 5.66E-09 2.48E-07 3.10E-07 

0.2 3.68E-07 2.44E-05 1.48E-05 1.41E-06 1.10E-04 4.14E-06 2.68E-05 5.51E-05 6.75E-06 

0.4 7.64E-08 2.89E-05 1.73E-05 1.11E-05 1.26E-04 6.18E-06 8.83E-06 8.67E-05 5.59E-06 

0.6 4.18E-07 6.14E-05 3.57E-05 3.51E-05 1.42E-04 5.41E-06 2.97E-05 1.17E-04 5.64E-06 

0.8 2.42E-06 1.06E-04 6.12E-05 8.14E-05 1.58E-04 2.13E-06 3.25E-05 1.47E-04 4.39E-06 

1 3.97E-07 1.69E-04 1.07E-04 9.98E-05 1.76E-04 3.17E-06 6.72E-05 1.71E-04 6.68E-06 
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Figure 5: Statistics for MAD and TIC values with the histograms and boxplot for 5 neurons 
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Figure 6: Statistics for MAD and TIC values with the histograms and boxplot for 10 neurons 
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Figure 7: Statistics for MAD and TIC values with the histograms and boxplot for 15 neurons 



Table 4: Statistics results for metrics for 15 neurons based ANN model of HIV model 

 

4. Conclusions 

A novel stochastic computing paradigm is designed to solve nonlinear HIV model of 

bioinformatics using different neurons based models of neural networks optimized with 

integrated heuristics of global capability of genetic algorithms and rapid fine tuning of decision 

variables by exploitation of local search strength of active-set method. The HIV model is 

effectively evaluated by proposed computing paradigm with layer structure based neural 

networks models for 5, 10 and 15 neurons and accuracy of numerical results enhanced by larger 

neurons based networks. The accuracy of the stochastic scheme is established by obtaining the 

overlapping results with Runge-Kutta numerical scheme having 4 to 6 decimal places of 

matching for solving HIV model. Statistical observations, based on 100 executions/trials to 

solve HIV model, in terms of magnitudes of mean, median, semi interquartile range and 

standard deviation metrics validate the accurateness, trustworthiness and robustness of the 

algorithm which is further endorsed by performance indices of MAD and TIC. 

In future, the presented scheme is a promising alternative solver to be explored/exploited for 

the solution of stiff and non-stiff nonlinear systems arising in the fields of fluid dynamics, 

astrophysics, nanotechnology, atomic physics, electric circuit theory, plasma physics and 

bioinformatics. 
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