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ABSTRACT

In the present study, the two-point boundary value problem is considered for the
variable fractional order differential equation with causal operator. Under the defini-
tion of the Caputo-type variable fractional order operators, the necessary inequality
and the existence results of the solution is obtained for the variable order fractional
linear differential equations according to Arzela-Ascoli theorem. Then, based on the
proposed existence results and the monotone iterative technique, the existence of
the extremal solution is studied, and the relative results are obtained based on the
lower and upper solution. Finally, an example is provided to illustrate the validity
of the theoretical results.
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1. Introduction

It’s well known that constant order fractional calculus has been viewed as a basic tool
to describe the natural phenomenon of the practical problems in recent years [1-5].
However, there exists many complex behavior in engineer practice which can not be
described by the constant order fractional order models. Thus, the variable order
fractional operator is proposed to model the complex phenomena.

The variable order (VO) fractional operator is originated at the end of the 20th cen-
tury. In 1998, Lorenzo and Hartley propose the concept of VO fractional operator [6].
In 2002, the concept is discussed more deeply, which connects with the physical pro-
cess [7]. Then, the VO fractional operator is successful applied to model the practical
problems of the engineering. And it arouses extensive attention between researchers.

Recent years, the theory of VO fractional derivatives and integrals is obtained a
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wide of study, but it’s still in the infancy at present. At the turn of the century, it is
used to simulate the temporal or spatial correlation phenomena [8,9]. According to the
concept which is put forward by Lorenzo and Hartley [6], the VO fractional operator
is treated as a generalization of the constant order fractional operator [10,11]. So far,
there exists several definitions of VO fractional derivative which includes Riemann-
Liouvile, Caputo, Marchaud [12], and Coimbra type fractional operator definition [13],
each of which have a special meaning to meet the desired objectives [14,15]. With the
deepening of research, a series of research hotspots are emerging such as the existence,
uniqueness of solutions of differential operators with variable fractional order.

In the past several decades, there exists several results on the existence of the solu-
tion for constant order fractional differential equation [16-25]. Moreover, the bound-
ary value problem has become an important research topic in the area of constant
order fractional differential equations. For example, Jiang et al [26] studied the two-
point boundary value problems for fractional differential equation with causal operator
by lower and upper solution method and the monotone iterative technique. Shuqin
Zhang [27] studied the nonlinear boundary value problem of a VO fractional differ-
ential equation, and obtained the existence result. Besides, Zhang [28] obtained the
existence results of solutions for the boundary value problem based on the Schauder
fixed point theorem. However, there few results on the boundary value problem of a
VO differential equation with causal operator by monotone iterative technique. Mo-
tivated by this, we apply the monotone iterative technique to investigate boundary
value problem of a VO fractional differential equation.

According to the definitions of the VO fractional operator, it’s well known that the
VO fractional operator is more complex than the constant order fractional operator.
Because it’s kernel is related to a variable exponent. Moreover, the VO fractional
operator is irreversible, and thus the VO fractional differential equations can not be
simply transformed into the equivalent Volterra integral equations. Thus, this requires
that the research on the existence of solutions for VO fractional differential equations
needs another methods.

The rest of paper is presented as follows: In section 2, some definitions and lem-
mas are listed. In section 3, The necessary inequality and the existence results of
the solution are obtained for the VO fractional differential equation. Section 4 gives
the theorem of the existence of extremal solution for the VO fractional differential
equation. Section 5 illustrates an example to verify the the theoretical results.

In this paper, we consider the following system

{ OCD;I(t’S)x(t) = (Qx)(t),t € [0,T7, (1)
H(z(0),z(T)) = 0.

where 0 < g1 < ¢(t,s) < g2 < 1.

2. Preliminaries

There exist many kinds of definitions for VO fractional derivative and integral 7], [14]
and [29]. In this paper, the Caputo type definition is adopted due to its extensive
application in engineering fields.

Definition 2.1. [7] The Caputo type definition of VO fractional integration is defined



as follows:

1 t
1909 44y = / t— )10 x(s)ds, 0 < g(t,s) < 1, 2
where, I'(+) is the Gamma function, t € [0, 7.
t t— S)q(t—s)—l
IQ(t’S)a:t :/ (—a:sds,0< t,s) <1, te|0,T], 3
and
t _ e)q(s)—1
1959 44 :/(ts)azsds,0<qt,s <1, te|0,T], 4

if the integration is point-wise defined.

Definition 2.2. [7] The Caputo type definition of VO fractional derivatives are de-
fined if the integration is point-wise defined as follows:

¢ DIt g (4) = m_lq(t)) /0 t(t — 5)" 1/ (s)ds, 0 < q(t, s) < 1, (5)
where, ¢ € [0, 7,
¢ DIt g (4) = /Ot mx’(s)ds,o <qlt,s) <1, te0,T], (6)
and
¢ DIt (1) = /Ot m:p/(s)dsﬁ < q(t,s) <1, t€0,T). (7)

Due to the complex of the VO fractional operators, the VO fractional calculus
Dts) - a(ts) do not satisfy the following property generally

[pits) patts) — ppts)talts) - pp(ts) pts) 4y = £(t). (8)

Thus, it requires more technique to deal with the boundary problem of VO fractional
system.

Definition 2.3. [30] The operator @ : C([to,T),X) — C([to,T),X) is said to be a
causal operator if for each couple of elements u,v € C([tog, T'), X ) such that u(s) = v(s)
for tg < s < t, the following equation holds

(Qu)(s) = (Qu)(s) for ae tg<s<t<T.

Definition 2.4. The solution of the boundary value problem of VO fractional system
(1) is defined by a function x € C*([0, 7], R) which satisfies:

() § DI (t) = (Qu)(t).t € [0, T,

(i) H(x(0),2(T)) = 0.



Remark 1. If the VO parameter ¢(t, s) is a constant, then, the above definition of
the VO fractional operator is reduced to the definition of the usual constant order
Caputo fractional order calculus.

For the fractional order differential equations, Arzela-Ascoli theorem is an important
tool in discussing the existence of solutions. Thus, in this present study, it’s applied to
prove the existence of the extremal solution for the VO fractional differential equation.

Lemma 2.5. ( [31])(Arzela-Ascoli) If a sequence {x,(t)} € C[0,T] is uniformly
bounded and equicontinuous, then it has a uniformly convergent subsequence.

3. The existence results of the solution for variable order fractional linear
differential equations

In this section, some necessary theorems that are used to prove the existence of the
extremal solutions are provided in the following.

Theorem 3.1. Assume x € C1([0,T],R) satisfy:

(9)

cpIBs)p(t) < —(Lx)(t), te[0,T),
x(0) < dz(T), d €10,1],

for 0 < q1 < q(t,s) < g2 <1, when q(t,s) = 1, the above inequality is also satisfied.
Stmultaneously, the following inequalities are true

T t —g) ! s)ds
2 gy ¢ s <1 (10

where L € C(E,E), E = C([0,T],R) is a positive linear operator. T =
I'(l—qy

Proof. Obviously, the following inequality is true

(3)%, 0<T <1,

1, 1<T < 400, (11)

T-ats) < {

with T = max{7T~%,1}, then, 7945 < T

In order to obtain the main results, the process is divided into the following situa-
tions.

Situation I. Assume z(0) < 0, and the inequality z(t) < 0,t € [0,T] is not true.
Then, there exists t* € [0,7] such that z(t*) > 0. If 6 = 0, then z(0) < 0. Thus,
t* € (0,T7]. Set

z(tp) = minz(t) < 0.
[0,¢7]

Through a series of mathematical transformations, it follows that

—(Lx)(t) >¢ DIz (t)



! (t — 3)7q(t’s) /
> [ Ty

> L /t(t _ S)fq(t’S)qu(t’s)x’(s)ds
T -q) o T

T tt—s_qz,
> g )

TT4 /t 3
> t—s) 2 (s)ds
Z i = Jo (t—s) (s)
TT®T(1 — q2)

¢D®2x(t).
Mi-a) 0
Put T = %, thus, we can get
D®g(t) < —T(Lz)(t). (12)

2

Then, applying the fractional operator [fo . to both sides of the differential inequality
(12), it’s obtained from the condition (10) that

I (°D®x(t)) < —TL?; ' (Lx)(t),

x(t") — x(tg) < _F(:Iq;) /t (t* — 5)="Y(Lx)(s)ds
Tato) (" e a—1(11)(s)ds
S‘r@>ﬁft‘@ (L1)(s)d
< —x(to),

then, x(t*) < 0 which is a contradiction.
Situation II. Assume z(0) > 0. Then, xz(T") > 0.
i)if o =1.
Suppose z(t) > 0 on [0, 7] and z(t) # 0. Then, fOT(T —5)=~Y(Lz)(s)ds > 0.
Based on the boundary condition of the inequality (9), then, it results that by
integrating the inequaty(12) from both sides

(1) < 2(0) = 1oy Jo (T = )27 (La)(s)ds,

which implies that the contradiction fOT(T — 5)271(Lx)(s)ds < 0.
Suppose z(t) < 0, for ¢ € (0,T]. Set

z(t) = té?gg]m(t) =—-v, v>0.

Based on the inequality (12), for t € [0, T, it’s obtained that

¢ DPg(t) < —T(Lz)(t) < —T(Lx)(t1) < vT(L1)(t).



Integrating the above inequality from both sides, it implies that

#(T) < a(t) + r<q2> / (T — 5y (L1)(5)ds

/t )& =1(L1)(s)ds

F(
< —-v+rv=0.

Then z(T") < 0 which is a contradiction.
if)if0 <6 < 1.
Suppose z(t) > 0, for ¢t € [0,T] and x(t) # 0.
Integrating the inequality (12) from 0 to 7', then, we can get

T T
<a(0) = g | 0= T s

I'(q2) Jo

combined with the boundary conditions, then,

whcih implies

5T T
x(O)g—HP(Q2)/O (T — 5)==Y(La) (s)ds.

Thus, integrating the inequality (12) can product the following inequalities

(1) < 2(0) — r(qu)/O (t — )% (La)(s)ds
r r ! 2—1 —T t—s‘z_la:ss
e [ =9 s = s [ = s (L))
<0.

Together with the assumption z(t) > 0, ¢t € [0,7], it’s derived that z(t) = 0 which is
a contradiction.
Suppose z(t) < 0. Set

oltz) = min 2(t) = —, >0

Based on the inequality (12), it’s obtained that

cD®y(t) < —T(Lx)(t) < Te(L1)(t).



and then,

T T
2(T) < 2(ty) — T)/ (t — $)= 1 (La)(s)ds

F(CD t

< et [Tt
< - — s s)ds
['(g2) to
<0.
which is a contradiction. Thus, the proof is completed. O

Based on Theorem 3.1, the following general inequality can be got.

Theorem 3.2. Assume a(t) € C([0,T],R) and z € C1([0,T],R) satisfy the following
mequality:

{c DI (1) < —a(t)z(t) — (La)(t), tel0,T], (13)

z(0) < éx(T), 5 €[0,1]

Jor0 < q1 < qlt,s) < gz <1 with0 < 6q(T) <1, q(t) = e T o @ds When q(t,s) =1,
the above inequality (13) is also satisfied. And, combined with the following condition

su T t —sqzllq2 T J5 a(r)dr s
b { IRt (L) (s)d }gl. (14)

tefo,r] L I'(q2)

Then z(t) <0, te0,T].

Proof. According to the inequality (13), we have
DPx(t) < —Ta(t)z(t) — T(Lx)(t). (15)

I'l—q:)
with T = FreoT(_g)"

Put m(t) = eTJo 99)ds5(1), then, m(t) satisfies the following equations:
cDEm(t) = Iy m'(t)
= I (T Jo )dsq(t)a(t) + eTfo $)ds g/ (4))
— I(L_Qz T [y a(s)ds [Ta(t)m(t ]
DI T O (L) 1)
Tl [T O (1Q) (1)

IN

IN

with Q(t) = q(t)m(t).
Then, by simple calculating, the system (13) is simplified to the form:

DEm(t) < =TI el o o (LQ)(1)], fort € [0,T],
m(0) < oym(T), for 61 = 6q(T).

Based on Theorem 3.1, the proof is completed. ]



Theorem 3.2 provides a basic tool for the following lemma according to Arzela-Ascoli
theorem.

Theorem 3.3. Consider the linear boundary problem

cDItS)y(t) = —a(t)u(t) — (Lu)(t) + 0(t), t€[0,T7, (16)
u(0) = 6u(T) + 7, TeR,

for u(t) € CH[0,T],R) and 0 < ¢1 < q(t,s) < q2 < 1. When q(t,s) = 1, the above

equality (16) is also satisfied. Let a(t),0(t) € C([0,T],R) and L € C(E, E) is a positive

linear operator. Assume the condition (14) hold for 0 < 61 < 1 with §; = se=T Iy als)ds
Then the linear problem (16) has a unique solution u € C1([0,T],R).

Proof. We claim that there’s only one solution at most for the linear problems (16).
In fact, a contradiction is made that it has two different solutions denoted by 1, T2 €
C'([0,T],R).
Set X (t) = Z1(t) — ZT2(t), then, we have the following problem:

{c DI X () = —a(t) X () — (LX)(t), (17)

X(0) = 6X(T).

According to Theorem 3.2, it’s obtained that X (¢) < 0, then, Z1(t) < T2(t),t € [0,T].
As the same way, put X (t) = Ta(t) — Z1(T"), then, we can get X (¢) < 0. Thus,
T1(t) = Ta(t), which implies that the linear problem has at most one solution.
The next step, we will prove that there exists at least one solution for the linear
problem (16).

Set v(t) = elo 45)dsy(t), by the simple calculating, then,

DUy (t) = DI [l o)ty ¢)]
= 15,7 [efo“)ds (t)u(t) + efo a5y (1))
= I "o M a(tyu(t) + e “ (—a(t)u(t) - (Lu)(t) + 0(1))]

= — Lo el O (L) (8)] 4 11 (e ) 1)
= —(Bv)(t) + 0° (1),

where,

B =17 [ef (s (L)) (1),
v fo

<> ”“(d )4)(t).

Then the system (16) is transformed into the following form

(18)

cDIts)y(t) = —(Bo)(t) + 0*(t), t<[0,T],
v(0) = 610(T) +, v €R,

where 61 = de™ Jo a(s)ds



Based on the property of the VO fractional operator, the following is to prove the
existence result by the iteration method as following:

(t — )~ a(ts)

mvn—l(s)ds — Q(/O vn—1(s)ds +v(0))(t), (19)

Up(t) = vp—1(t) —l—/o

where,

Q /0 oni(8)ds + 0(0))(8) = —(Bo)(t) + 6 (2).

Now, we will prove that the sequence {v,(t)} is uniformly bounded and equi-
continuity. B B
Assume {v,—1(t)} is uniformly bounded on [0,7] and let |v,—1(t)] < Gp—1, Gy =

maxo<i<7 |Q[t, fy vn—1(s)ds + v(0)]].
Then, v, (t) satisfies the following inequalities

)_‘I(tﬂs)

|on(8)] < [on—1(t)] +/O ‘m
Gn1

t
el + = (=) ds 4+ @

vn_l(s)his—%\CQH,jC vn1(5)ds + v(0)]

INA
@
+

G, 1TT® /t B _
n-1+—/—m— t—s) ds+ G
=) oY s

G, 1TT _
-1+ + G < 400,
S N G TG RS B

IN
D)

IA
Ql

which implies that the sequence {v, ()} is uniformly bounded.
For 0 <t; <ty <T, we have the following inequalities:

[on(t2) = (t1)]

to (t2 — 5)—Q(t2,s) t1 (tl o S)—Q(t1,8)
/0 mvn—l(s)ds —/0 mvn_l(s)dg

; 1@( / ® a(s)ds + 0(0))(t2) — QA / " o ()ds +v(0))(t1)

+ [vn—1(t2) — vp_1(t1)]

< |vn-1(t2) — vp-1(t1)| +

B (ty — s)_Q(tZ“S)) B (t; — S)—q(tl,s)
/0 [F(l —q(te,s)) T(1 _q(tl,s)):|vn—l(8)d8

; 'Q( / ® o1(s)ds + v(0))(t2) — QA [ " aea(s)ds + 0(0)(t1)

12 (ty — S)—(I(tz,s)
N2 (s)d
/tl D= qlta,)) (88

Gn—l /t1 tQ—S_ tl—S_
< |vp_1(te) — vp_1(t1)| + —2—1 q(t2,s) _ q(t2,s)
(t = )/T)~10=) (12— 5)/T) =02 |

T(1— q(t2,s)) (1 —q(t1,5))

_l’_

t1
T4 ds 4 Gy /
0




t1 (tl _ s>7Q(t275) (tl _ S)fq(tlzs)

L(1—q(t1,s)) T(1—q(ts,s))

+|Q(/O vn_l(s)ds—i—v(O))(tg)—Q(/O vn1(8)ds + v(0))(t1)

quanfl /t2 _
+ = to —s) ®ds
- |, 277

TT:G, 1 [P
< Jonor(t) = vnos ()] 4 e Cn=L /
0

Il —q)
/

(t1—s)™" (tL—5)"® ‘ Gno1
_ (tl _ S)—q(tl,S)

T8 gs + G, 4

0

ds + TT(D Gn_1-

(tQ — 5)—111 — (tl — S)_ql
— t _ _Q(t275)
T(1—q1) (=)

P(1—q(t2,5)) T —qlts,5)) /0
ds + ‘Q(/O "1 (5)ds + 0(0))(t) — Q(/O 1 (s)ds + 0(0)) (1)

n quan—l
I'(1—q1)(1 - qo)

<|vp-1(t2) — vn—1(t1)| +

/t1
0

—(ti — 5)_q(tl’s)} dS‘ +

(ta —t1)' "%

TT%2G, 4
02 —q)
(tl — S)—Q2 (tl — S)_q2 ‘ Gp—1

B8 =7 4 (o — 1) 70| + TT% Gy

t1
0

T(1—q(ts,5)) T(1—q(ts,s)) '(l—aq)
Tquanl

L1 —q)(1—go)

s ]Q( / % 1 (5)ds + 0(0))(t2) — QA / " v a(s)ds + v(0)(11)

(t2 _ tl)l—‘b

Assume limy, 1, |vn—1(t2)—vn—1(¢1)| = 0. Since the Gamma function I'(¢) is continuous
on (0, 1], then,

1 . 1
I(1—q(t,5)) T —q(tz;9))

as t1 — 9.
Besides, the continuity of the exponential function results in the following conclusion:

t1
lim [(tl —5)7 1) _ (4 — s)_‘I(tl’s)] ds = 0.
0

t1—ts

And,

‘Q(/O on1(s)ds + v(0)) (t2) — Q(/O o1 (s)ds + v(0)) (1)
< [(Bv)(t2) — (Bv)(t1)| + |0%(t2) — 6" (t1)]

According to the condition of Theorem 3.3, the operators B and §* are bounded, then,
limy, e, |Q(fy2 vn—1(8)ds + v(0))(t2) — Q(fy* vn_1(s)ds + U(O))(tl)’ = 0.

Thus, we have limy, 1, |vn,(t2) — v,(t1)| = 0, which implies that the set {v,} is
equi-continuous. By Arzela-Ascoli theorem, there exists a converge subsequence which

10



converges uniformly to a continuous function v* for ¢ € [0, T]. Taking the limit from
the both side of the equation(19) when n — oo, then, we have that v* is the solution
of the system (18). The proof is completed. O

4. The existence of the extremal solutions for the boundary problem

Definition 4.1. A function z € C*([0,T],R) is said to be an upper solution of the
boundary problem (1) if it satisfies:

{ eIty (1) < (Qu)(t), ¢ € [0,T],
H(z(0),2(T)) <0.

Reversely, it is a lower solution of the boundary problem (1).

Definition 4.2. A function u € C*([0, 7], R) is called the maximal solution of problem
(1) if z(t) < u(t), t € [0,T], for each solution x of the boundary value problem (1).
Reversely, it is a minimal solution.

In order to get the existence of the extremal solutions for the boundary problem
(1), we give the following assumptions:

o (H): (Qz)(t) € C(E,E) and, H € C(R x R, R), E = C'([0, T}, R);

e (Hs): ug, wvo € CY[0,T],R) are lower and upper solutions of problem (1)
respectively, and ug(t) < vo(t), te€[0,T];

e (Hj3): the function a € C([0,T], R) satisfies

(Qz)(t) = (Qy)(t) < a(®)[y(t) — z(®)] + L(y — z)(t),

for up(t) < x(t) < y(t) < wo(t), te€0,T];

o (Hy): there exist constants a, b satisfying 0 < b <a, a > 0 and

for up(0) < x <7 < vp(0) and up(T) <y <7 < wvo(T).
Theorem 4.3. Assume that (Hy),(Hz2),(Hs), (H4) and the condition (14) hold. Then,
there exist two monotone sequences {u,(t)}, {v,(t)} such that lgm un(t) = m(t),
li_>m vp(t) = n(t), which m(t), n(t) are the minimal and mazximal solution of problem

(1) respectively, with ug < m(t) < n(t) < vy.

Proof. For the following linear boundary problem

{CDq“vS)x(w a(t)a(t) = —(La)(t) + 5¢(0), (20)
2(0) = ¢(0) = LH(C(0),¢(T) + rla(T) — ¢(T)),
where d¢(t)

= (QO() + a(t)¢(t) + (LO(®),0 < r = 2 < 1,¢ € O([0,T],R) and
ug(t) < ¢(t) < wo

(t)-

11



Based on Theorem 3.3, the linear boundary problem (20) has a unique solution.
We claim that each solution x(t) of the linear boundary problem (20) belongs to the

set [uo(t),vo(t)], t € [0,T], where [ug,vo] = {x € C([0,T],R) : up(t) < x(t) < wvo(t)}.
It’s obtained from (Hsz) that

DIy (1) < —a(t)uo(t) — (Lug)(t) 4 S ().
Due to the condition (Hz), we can get that
(Quo)(t) — (QC)(t) < a(t)[C(t) — uo] + L(¢ — uo)(t),
then, d¢(t) > dy,(t) which implies
DU (t) > —a(t)a(t) — (La)(t) + b, (2).
Thus,

DI (ug — ) (t) =¢ DIEDyg(t) —¢ DI (1)
< —a()uo(t) — (Luo)(t) + Cu, (1) + a(t)z(t) + (L) (t) — Cuo (1)
= —a(t)(uo — x)(t) — L(uo — x)(t)

and
(uo = 2)(0) = uo(0) — ¢(0) + %H(C(O), (1)) = rl=(T) — C(T)].
According to the condition (Hy), it’s obtained that

H(¢(0),¢(T) — H(uo(0),uo(T)) < a(¢(0) — uo(0)) — b(¢(T") — uo(T)).

Then,

(uo — x)(0) < up(0) — ¢(0) + %H(C(O), ¢(T)) = rla(T) = (7]
< up(0) = €(0) + ¢(0) — uo(0) = r{(T) + ruo(T) — r[a(T) — ¢(T)]
=r(ug —z)(T).

Set P(t) = uo(t) — x(t), we have the following boundary problem:

DI P(1) < ~a(t)P(L) ~ (LP)(1) o
P(0) <rP(T).
Thus, in light of Theorem 3.2, we have the inequality P(¢) < 0, and then uo(t) <
z(t), t € [0,T]. As the same method, it can be showed that z(t) < vo(t), t € [0,T].
Thus, ug(t) < z(t) < wvo(t).
In the following step, we construct two kinds of sequences {u,},{v,} which satisfy

12



the boundary value problem

{c DIy, 1 (t) = (Qun)( ) = L(unt1 — un)(t) — a(t)[uns1(t) — un(t)], (22)
Un+1(0) = un(0) — ¢ H (un(0), un(T)) + 7[tn1(T) — un(T)],
and
{CDq(t’s)vnH( ) = (Qup)(t) — L(vpt1 — vn)(t) — a()[vnt1(t) — vn(t)], (23)
Un41(0) = v(0) = L H (04(0), 0n(T)) + ron11(T) — va(T)].

From the above results of the boundary problem(20), it’s obtained that each of the
boundary value problem (22) and (23) have a solution in the sector [ug(t), vo(t)].
We claim that

uop(t) <up(t) <wg(t) <o <up(t) <op(t) < -+ <wat) <wvi(t) <w(t), telo,T].

In fact, the process is divided into the following cases based on the induction method;
(i): we show that up < wu;. Since ug is the lower solutions of problem (1), then, we
have

{ cpat, S)uo(t) < (Quo)(1),
DIGS) (1) = (Quo) (1) — (L(ur — uo))(t) — a(t)[u (t) — uo(t)].

Put Py(t) = up(t) — ui(t), then, P;(t) satisfies the following inequalities:

cDIE9) Py (1) =¢ DIy () —¢ DIy, (t)
< (Quo)(t) — (Luo)(t) — (Quo)(t) + (Lu)(t) + a(t)[u1(t) — uo(t)]
= —a(t)P1(t) — (LP)(t).

The boundary condition is listed as
1
P1(0) = uo(0) = u1(0) = ~H (uo(0), uo(T)) — r[ur(T) — uo(T)] < rA(T).

It’s showed that uy < wug, for t € [0, T] according to Theorem 3.2.

(ii): Assume ug_1(t) < ug(t), t € [0,7T]. By the induction hypothesis method, we
claim ug(t) < ugs1(t), t€0,T].

Put Pyy1(t) = ug(t) —uk,1(t), by simplifying the calculation, it’s obtained from the
condition (Hjs) that,

DU Py (8) = —alt) Pega (t) — (LPey)(1),
Pr11(0) < 1Py (T)
which is transformed by

ch(t,s)Pk_H( ) _c Dq(t s)uk(t) c Dq (t,s) uk+1(t)
= (Qup—1)(t) — (Qui)(t) — Lugp — up—1)(t) + Llug+1 — ug)(t)
— a(t)[ur(t) — up—1(t)] + a(t) [up+1(t) — ur(t)]
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< a(t)[u(t) — uk—1(t)] — L(ug — ug41) () — a(t)[ug(t) — up-1(t)]
+ a(t)[ugs1(t) — ug(t)]
= —a(t)Pry1(t) — (LPy41)(t)

and

Pp41(0) = ug(0) — up41(0)
= ug_1(0) — %H(Uk—l(o)a uk—1(T)) + r[ur(T) — up—1(T)] — uy(0)
+ §H<uk<o>, u(T)) = rlunr (T) — ur(T)]

< w1 (0) — 0 (0) + [k (0) — w1 (0)) — D(uk(T) — i 1(T)]
+ r[ur(T) = w1 (T)] = run 1 (T) — ur(T)]
= T‘Pk+1(T).

Then, the inequality ug(t) < ugs1(t), t € [0,T] is true. Thus, by the inductive
hypothesis, it’s obtained that

up(t) <wup(t) <--- <wug(t), tel0,T].

By the same way, it can be showed that
Uk(t) < ’kal(t) <. < Ul(t) < Uo(t), te [O,T].

(iii): The following is showed that w,(t) < wv,(t), t€[0,T], n=1,2,---
Set P, = u,, — vy,. Similarly, the following inequality is true:

ch(t,S)ﬁn(t) = _a(t)ﬁn(t) - (Lﬁn)(t)7
ﬁn(O) < Tﬁn(T)

which yields u,(t) < v,(t), t€[0,T], n=1,2,--- according to Theorem 3.2.
Thus,

uop(t) <up(t) < - <up(t) <ovp(t) < - <wvi(t) <wo(t), te€[0,T].

Then, it implies from standard arguments that

7}1_)120 un(t) = m(t) and 7}1—>Holo vn(t) = n(t)

uniformly on [0, 7], where m(t) and n(t) are the solutions of the boundary problem
(1).

Lastly, we show that m(t) and n(t) are the extremal solutions of the boundary
problem (1).

Suppose z(t) is any solution of the boundary problem (1) with z(t) € [z0,y0] and
for some k >0, wup_1(t) < z(t) <wvp_1(t), te€0,T).
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Set p(t) = ug(t) — x(t). From the condition (H3), we obtain that

CDq(t’S)ﬁ(t) _c Dq(t,s) ¢ Dq(t’s)JI(t)

= (Qui—1)(t) = Llug — up—1)(t) — a(®)[ur(t) — up—1 ()] —
)

< a(®)[z(t) — w1 (D] + Lz — ug)(t) — a(t)[ur(t)
< —a(t)p(t) — (Lp)(1).

— ug-1(t)]

(Qu)(t)

and p(0) < rp(T). Based on Theorem 3.2, it implies that ux(t) < z(¢). Similarly, by

the same process, it yields z(t) < vg(t).

Thus, by inductive hypothesis, it follows that wu,(t) < z(t) < v,(t), for all n, t €

[0,T]. Then, m(t) < x(t) < n(t), which completes the proof.

5. An illustrative example

Consider the linear boundary problem

{ cDIGA) (1) = —a(t)a(t) + a(t)sin(z(t)) — t [y sz(s)d

(Quo)(t) = —a(t)o + a(t)sind — (523 < —a(t)(d — sind) <0

H(vo(0),v0(1)) =€’ =6 — = >0,

)-ik\w

S,

=¢ DIty (1),

O]

which means that wug, vp are lower and upper solutions of problem (24), respectively.

Besides,

(Qx)(t) — (Qu)(t) = —a(t)[z(t) — y(t)] + at)[sin(x(t)) — sin(y(t))] — t/o s(z(s) —y(s))ds.

< a(t)ly(t) — x(t)] — t /O s(x(s) — y(s))ds

for 0 < z(t) < y(t) < J. Assume that

te[0,1] (q2) Jo
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Then, the extremal solutions of the boundary problem are existed (24).

6. Conclusion

The present paper is focused on the two-point boundary value problem of VO fractional
differential equation with causal operator. The relative theorems about the necessary
inequality and the existence results of the solution have been proposed. Based on the
monotone iterative technique, the existence result of the extremal solution for VO
fractional differential equation with causal operator has been obtained by the lower
and upper solution. Lastly, an example has been listed to illustrate the validity of the
theoretical results.
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