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Abstract In this paper, we present the sine-Gordon expansion method to

prepare the mixed dark bright wave patterns to the nonlinear partial differen-

tial equations arising in mathematical physics. Then, we apply the proposed

method for a credible recourse of two nonlinear physical models: the modified

Vakhnenko-Parkes and modified α-equation. These exact solutions comprise

the hyperbolic, trigonometric, rational and exponential function with few

licentious parameter. The analytical solutions have different physical struc-

tures and they are graphically analyzed in order to show their dynamical

behavior by means of 2D, 3D and contour plots.
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1 Introduction

Nonlinear partial differential equations (NPDEs) are used to explain non-

linear complex physical occurrence, which play a vital role in physics and

appear in several fields of science and engineering. Travelling wave solutions

of NPDEs play a vital role in the visibility of these physical phenomena

in nature such as vibrations, self-strong and so on. Finding new solutions

for NPDEs is a major and important work that plays an important role in

topology. Over the last few years, exact solution, analytical approximate

solution, and numerical solution of many NPDEs have been proudly ex-

tracted attentions of expert from all over the world. Some powerful methods

which have been newly evolved to quest exact explicit solution of NPDEs

are, for example, the simplified hirota’s technique [1, 4], the variational it-

eration method [2], the finite forward difference method [3], the lie sym-
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metry method [5, 10, 29], the generalized riccati mapping method [6], the

tanh method and SCM [7, 40], the fourth-order iterative method [8], the

sine-Gordon expansion method [9, 14, 16, 24, 42, 43], the hirota’s bilinear

form method [11, 23], compact envelope dark solitary wave[12], the tanh and

extended tanh method [13, 38, 40], the JEFM [15]-[36], the tanh function

method [17, 34, 38], the modified exp(−Ω(ξ))-expansion method [18]-[22],

dark-brite soliton solution[19], the MSEM and the ESEM [20]-[30], the ma-

trix analysis method[21], the via improved bernoulli sub equation method[25],

the (G
′

G
)expansion approach [26], the bifurcation method [28], the generalized

darboux transfor [31]-[33], the finite difference method [32],the MESM [35],

and many others. The rest of this paper is consolidated follows, the regular

property of the described method is given in Section 2. To obtain the many

new soliton solutions of MAE and MVPE, SGEM is applied. The 2D, 3D

and contour simulations of the new solution are plotted in Section 4. Finally,

we give a conclusion in a detailed manner.

2 The SGEM

In this section, we present the (SGEM) as following [9, 14, 16, 24, 42];

uxx − utt = m2sin(u), (1)

where u = u(x, t), m is a real const. Applying the wave transform u(x, t) =

U(ξ), ξ = x− ct to Eq.(3), we get the following NLODEs;

U ′′ =
m2

(1 − c2)
sin(U), (2)

where U = U(ξ), ξ and c are the dimension and velocity of the traveling

waves, respectively. We integrate Eq.(4) and it can be inscribed as follows;[(
U

2

)′]2
=

m2

(1 − c2)
sin2

(
U

2

)
+K, (3)

where K is the constant of integration. Substituting K = 0, ω(ξ) = U
2

and

a2 = m2

(1−c2) in Eq.(5), it yields

ω′ = asin(ω). (4)
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Setting a = 1 in Eq.(6) gives

ω′ = sin(ω). (5)

Solving Eq.(7) by variable separable, we receive the two important properties

as

sin(ω) = sin(ω(ξ)) =
2peξ

p2e2ξ + 1

∣∣∣∣
p=1

= sech(ξ), (6)

cos(ω) = cos(ω(ξ)) =
p2e2ξ − 1

p2e2ξ + 1

∣∣∣∣
p=1

= tanh(ξ), (7)

where p is an integral const. and non-zero. By using these vital, properties,

we can consider the general form of NPDEs as

P (u, ux, ut, uxx, utt, uxt,...) = 0, (8)

where u = u(x, t). We consider the solutions of Eq.(10) as following expres-

sion,

U(ξ) =
n∑
i=1

tanhi−1(ξ)[Bisech(ξ) + A1tanh(ξ)] + A0. (9)

Eq.(11) can be rearranged ethically to Eq.(8) and Eq.(9) as follows;

U(ω) =
n∑
i=1

cosi−1(ω)[Bisin(ω) + A1cos(ω)] + A0. (10)

Using the homogenous equilibrium theory to determine the value of n is

considered. We suppose that the sum of coefficient of sini(ω)cosj(ω) with

the equal strength is naught, this yields an equation arrangement. With

aid of the computational program, we solve the equation system to find the

value of Ai, Bi, µ and c. Finally, substitute the values of Ai, Bi, µ and c into

Eq.(11), we get the recent traveling wave solution to the Eq.(10).

3 Applications and Mathematical Analysis

In this part of the paper, we investigate two models afternamed modified α

equation (MAE) defined as

ut − uxxt + (α + 1)u2ux − αuxuxx − uuxxx = 0, (11)

3



In 2006 and 2019 Islam et al. and Wazwaz studied on a family physical

properties of Eq.(11) in [35], in which α is a positive integer, Eq.(11) is a

strategic application for delineate the procedure of phase dissociation: in

cold steel alloy and ordinarily used in solidifying and nucleation problem

where in u(x, t) the two independent variables are an unnamed function of

x and t that indicate the space variables in the flank of wave publicity and

time, respectively. The unnamed function u(x, t) denotes the dimension of

the relevant wave mode, the terms u2ux and uuxxx denote the nonlinear wave

steepening and uxxt denotes the disbandment wave effects. The coefficients

α is a positive integer Eq.(11) many well-know nonlinear wave equation can

be diminished.

Secondly, modified Vakhnenko-Parkes model (MVPE) defined as [1]

uuxxt − uxuxt + u3ut = 0, (12)

is considered. MVPE has been newly and firstly introduced by Wazwaz in

2019 [1]. He has proved that the MVPE satisfy the Painleve properties.

More recently, S.Sakovich has shown that MVPE bears the features of sine-

Gordon equation [7]. In this paper, we study to find new hyperbolic function

solution of MAE and MVPE by using SGEM based on sine-Gordon equation

firstly. It is reasonable that many models in science and engineering have an

empirically parameter. Thus, unspoiled solution give freedom to researchist

to structure and dash experiment, by establish suitable or inartificial condi-

tion, to regulate these parameter. Therefore, explication and receive exact

travelling wave solution is becoming copious seductive in nonlinear sciences.

3.1 Investigations of MAE

Using the traveling contemplate the wave transformations

u(x, t) = U(ξ), ξ = kx− ct, (13)

where k and c are real const. and non-zero. Substituting Eq.(13) into Eq.(11),

the following nonlinear differential equations is obtained :

ck2U
′′′ − k3UU

′′′
+ (

k3 − αk3

2
)(U ′)2 − cU ′ +

k

3
(α + 1)U3 = 0, (14)
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Integrate Eq.(14) first with regard to ξ and situation the constant of integrate

to zero, yields following NODE

6ck2U
′′ − 6k3UU

′′
+ 3k3(1 − α)(U ′)2 − 6cU + 2k(α + 1)U3 = 0, (15)

Balancing in Eq.(15), it yields as n = 2. Then, we get the follows

U(w) = B1sin(w) + A1cos(w) +B2cos(w)sin(w) + A2cos
2(w) + A0, (16)

differentiating Eq.(16) twice, yields

U
′′
(w) = B1cos

2(w)sin(w) −B1sin
3(w) − 2A1sin

2(w)cos(w)+

B2cos
3sin(w) − 5B2sin

3(w)cos(w) − 4A2cos
2(w)sin2(w)+

2A2sin
4(w),

(17)

Substitute Eqs.(16,17) into Eq.(15) we find a system of equation in the

form of trigonometric function through building few trigonometric identities

replacement, we can collect a set of algebraically equation by equate every

sum of the multiples of the trigonometric function sini(w)cosi(w) with the

equal strength to zero to receive the soliton solution of Eq.(11), we replace-

ment the acquired value of the replacement into Eq.(9) by thought n = 2.

Case-1 When we consider as α = 4, A0 = 96
25

− 3i
25
, A1 = 0, A2 = −126

25
+

18i
25
, B1 = 0, B2 = 18

25
+ 126i

25
. k =

√
−7

5
+ i

5
, c = 3

5

√
73
5

+ 161i
5

and inserting

these values along with Eq.(13) into Eq.(9), yields following new complex

and mixed dark-bright soliton solutions to the MAE as

u1(x, t) = (
96

25
− 3i

25
) − (

18

25
+

126i

25
)Sech[

3

5

√
73

5
+

161i

5
t−
√

−7

5
+
i

5
x]

Tanh[
3

5

√
73

5
+

161i

5
t−
√
−7

5
+
i

5
x]

− (
126

25
− 18i

25
)Tanh[

3

5

√
73

5
+

161i

5
t−
√

−7

5
+
i

5
x]2.

(18)

Case-2 If α = 4, A0 = 96
25

+ 3i
25
, A1 = 0, A2 = −126

25
− 18i

25
, B1 = 0, B2 =

18
25

− 126i
25
, k =

√
−7

5
− i

5
, c = 3

5

√
73
5
− 161i

5
, putting these together Eq.(13)
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into Eq.(9), presents another novel complex soliton to the MAE as

u2(x, t) = (
96

25
+

3i

25
) − (

18

25
− 126i

25
)Sech[

3

5

√
73

5
− 161i

5
t−
√

−7

5
− i

5
x]

Tanh[
3

5

√
73

5
− 161i

5
t−
√
−7

5
− i

5
x]

− (
126

25
+

18i

25
)Tanh[

3

5

√
73

5
− 161i

5
t−
√

−7

5
− i

5
x]2.

(19)

Case-3 When α = 4, A0 = −18
5
, A1 = 0, A2 = −18

5
, B1 = 0, B2 = 18i

5
,

k = 1, c = 3, it produces following another new mixed dark-bright soliton

u3(x, t) = −18

5
− 18

5
iSech[3t− x]Tanh[3t− x] +

18

5
Tanh[3t− x]2. (20)

Case-4 If we take as α = 4, A0 = −18
5
, A1 = 0, A2 = −18

5
, B1 = 0, B2 =

−18i
5
, k = 1, c = 3, we get another conjugate mixed dark-bright soliton

u4(x, t) = −18

5
+

18

5
iSech[3t− x]Tanh[3t− x] +

18

5
Tanh[3t− x]2. (21)

Case-5 Considering these values of α = 4, A0 = −9
5
, A1 = 0, A2 = 9

5
, B1 =

0, B2 = 0, k = 1
2
, c = 3

2
, it presents new dark soliton solution

u5(x, t) = −9

5
+

9

5
Tanh[

3t

2
− x

2
]2. (22)

Case-6 Taking α = 6, A0 = −24
7
, A1 = 0, A2 = 24

7
, B1 = 0, B2 = −24i

7
, k =

−1, c = −4, we obtain other solution as

u6(x, t) = −24

7
− 24

7
iSech[4t− x]Tanh[4t− x] +

24

7
Tanh[4t− x]2. (23)

Case-7 Getting α = 6, A0 = −24
7
, A1 = 0, A2 = 24

7
, B1 = 0, B2 = 24i

7
, k =

−1, c = −4, we gain other conjugate results according to different values of

α as

u7(x, t) = −24

7
+

24

7
iSech[4t− x]Tanh[4t− x] +

24

7
Tanh[4t− x]2. (24)
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3.2 Investigation of MVPE

It can be considered the traveling wave transformation for the MVPE Eq.(12)

as

u(x, t) = U(ξ), ξ = kx− ct. (25)

Using above transformation into Eq.(12), we get the following equation;

−4k2UU ′′ + 4k2(U ′)2 − U4 = 0. (26)

With the balance rule, we find n = 1. Using as n = 1 into the Eq.(10) gives

the following form

U(ω) = B1sin(ω) + A1cos(ω) + A0. (27)

Getting necessary derivations of Eq.(27), if we consider them into Eq.(26),

we can find an algebraic system being various coefficients of trigonometric

functions. When we solve these systems via various computational programs,

we can find Ao = 0, A1 = 0, k = −1
2
B1 which gives the following hyperbolic

function solutions as;

u(x, t) = B1sech

(
ct+

B1

2
x

)
. (28)

where c and B1 are real constants with non-zero for valid of solution. Under

the suitable values of parameters, we plot several surfaces of solution obtained

in this paper by using SGEM.
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4 Conclusions

In compendium, in this paper we proposed a SGEMs that is much common

than the current classical sine-Gordon method. This new approach is used

to prepare various traveling wave solution of the modified α-equation and

modified Vakhnenko-Parkes models. Several type of solutions, namely the

new complex and mixed dark-bright soliton, the new dark soliton, conjugate

mixed dark-bright soliton, singular soliton have been provided. Some of these

solutions are new and for instance the soliton ones are used for the transmis-

sion of data. In all these solutions, α, k, and c are licentious nonzero con-

stants. The expressions of ui(x, t) with i = 1, 2, ...........8, are acquired from

the solution ui(x, t) though Eq.(18-24) and Eq.(28) these solutions are singu-

lar solitons and solitary wave soliton of the modified α-equation and modified

Vakhnenko-Parkes model. They have identical shape to those in figs.1-22 for

exact value of parameters nevertheless, the 2D and 3D-dimensional represen-

tations of few of these solution different enthralling aspect of this work is that

the current method the SGEMS can be employed to recover the solution in

[18]-[24] and [28] with the classical sine-Gordon expansion also to solve other

variant of nonlinear equations.
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